WANKEL ENGINE

wankel-engine

It works on a similar principle on the otto cycle.

It consists of three lobes rotor, casing, spark plug, suction, and exhaust ports.

The rotor of the engine is driven eccentrically in the casing in such a way that there are three separate volume trapped between the rotor and casing.

 

The volume trapped in each lobe performs the function of suction, compression, ignition, combustion, expansion, and exhaust processes.

Therefore,

we get three power strokes in one revolution of the rotor

WANKEL ENGINE

https://youtu.be/josJhz8VS8A

In the case of a four-stroke I.C. engine, we get one power stroke in two revolutions of the crankshaft,

Thus,

the Wankel engine develops six times the power for the same capacity of cylinder compared to reciprocating I.C .engines.

Intake:-

When a tip of the rotor passes the intake port, a fresh mixture starts getting into the primary chamber. The chamber draws fresh air until the second apex reaches the intake port & closes it. At the instant, the fresh air-fuel mixture is sealed into the primary chamber & is being removed for combustion.

Compression:-

The chamber one(between corner 1 to corner 2) containing the fresh charge gets compressed

to the form of the engine by the time it reaches to sparking plug.
While this happens, a replacement mixture starts getting into the second chamber(between corner 2 to corner 3).

Combustion:-

When the sparking plug ignites, the highly compressed mixture expands explosively. The pressure of expansion pushes the rotor within the forward direction. This happens until the primary corner passes through the exhaust port.

Exhaust:-

As the peak OR corner 1 passes the exhaust port, the recent high-pressure combustion gases are liberal to effuse of the port.
As the rotor continues to maneuver, the quantity of the chamber goes on decreasing forcing the remaining gases out of port. By the time the corner 2 closes the exhaust port, corner 1 passes by the intake port repeating the cycle.
While the primary chamber is discharging gases, the second chamber(between corner 2 to corner 3) is under compression. Simultaneously, chamber 3(between corner 3 to corner 1) is drawing a fresh mixture.
This is the sweetness of the engine – the four sequences of the four-stroke cycle, which occur consecutively during a piston engine, occur simultaneously within the Wankel engine, producing power during a continuous stream.

What is carburetor?

Maximum efficiency

 

 

 

FUNDING FOR CARBON CAPTURE THECHNOLOGIES

 ANNOUNCEMENT BY US DEPARTMENT FOR FUNDING CARBON CAPTURE TECHNOLOGIES

The US Department of Energy has announced $72m in funding for funding carbon capture technologies and $29m for fusion research projects.

On Wednesday, the department announced money for projects investigating two different areas of carbon capture.

within the first funding opportunity, nine new thermal power projects and industrial carbon sources will receive $51m for advancing carbon capture and storage (CCS).

This will involve testing engineering-scale technologies on flue gases from coal-fired and natural gas-fired power plants.

A further $21m is going to be split between 18 projects that specialize in capturing CO₂ directly from the air,

referred to as direct air capture.

co2

These projects will specialize in developing and field-testing new materials used in direct air capture.

General Electric Research, Susteon, Innosense, and Electricore have each received many thousands of dollars

To develop different methods and sorbent materials for capturing CO2 from the air.

sorbent material

US Secretary of Energy Dan Brouillette said:


“The projects selected as a neighborhood of this research will help us develop the technological solutions needed to scale back greenhouse emission.

This is often critical to balancing our nation’s energy use while continuing to steer the planet in emissions reductions.”

Assistant Secretary for the Office of Fossil Energy Steven Winberg said:

“The primary mission of our office is to make sure that we can still believe its fuel resources for clean and secure energy.

The advancement of carbon capture technologies, including direct air capture, contributes there to the mission.

Our ultimate goal is to mature these technologies

In order to commercialize and delivered to the market.”

Fusion funds specialize in technologies surrounding the most reactor

The department also announced $29m for fusion technology advancements.

Fusion energy generation remains at an experimental stage, with research projects that specialize in consistently producing more energy

Than is required to start out the fusion process.

In a statement, the department said that while this has progressed,

“there remains a big got to specialize in the materials and enabling technologies which will be needed to determine fusion energy’s technical and commercial viability once net energy gain is achieved.”

The support will go toward 14 projects making advancements to technologies outside of this “fusion core”. This comes as a part of the Galvanizing Advances in Market-aligned fusion for an Overabundance of Watts (GAMOW) scheme.

The funded projects will cover three research areas. the primary of those covers the technologies, materials, and superconducting-magnet and fuel-cycle subsystems between the fusion plasma and balance of plant systems.

Oak Ridge National Laboratory received $8.65m for 3 projects, one among which can increase the warmth tolerance of materials in subsystems round the thermonuclear reactor.

Significant funding for US fusion research

The projects also will check out cost-effective, high efficiency, high-duty-cycle electrical driver technologies, also as those with more general applications, like new fusion materials, manufacturing processes, or scaling-up technologies.

The University of Houston has received $1.5m to continue its research into rare-earth metallic tapes. These could allow magnets infusion devices to become more powerful and cheaper to manufacture, lowering their cost by 30 times.

The Advanced scientific research Agency sponsors the GAMOW scheme.

Director Lane Genachowski said:

“Fusion energy may be a potentially game-changing clean energy source,

but for many years it faced scientific and technical challenges.

GAMOW teams will work to further develop enabling fusion materials and subsystem technologies, with attention on the timely future commercialization and deployment of fusion energy generation.”

International governments have collaborated on the ITER project in France, but some companies have started work on smaller reactors. In August, company Chevron invested in Zap Energy, which focuses on scalable fusion technology.

 

 

Also check:https://forgottentheory.com/moon-landing-facts/

 https://forgottentheory.com/another-way-of-cooling-in-refrigeration-system-magneto-caloric-effect/

 ANTI SOLAR PANEL

 

MOON LANDING FACTS

It was a feat for the ages. Just seven years before, a young president had challenged the state to land a person on the moon—not because it had been “easy,” as John F. Kennedy said in 1962, but because it had been “hard.” By July 20, 1969, Armstrong backed down a ladder and onto the moon’s surface.

Along the thanks to achieving JFK’s vision, there was much diligence, drama, and surprise. Here are some lesser-known moments throughout the epic U.S. effort to succeed in the moon.

MOON LANDING FACTS

1. Moon dirt smells.

A big question facing the NASA team planning the Apollo 11 moon landing was what would the moon’s surface be like—would the lander’s legs land on firm ground, or sink into something soft? The surface clothed to be solid, but the important surprise was that the moon had a smell.

Moon soil is extremely clingy and hard to ignore, so when Armstrong and Aldrin returned to the lunar excursion module and repressurized it, lunar dirt that had clung to the men’s suits entered the cabin and commenced to emit an odor. The astronauts reported that it had a burned smell like wet fireplace ashes, or just like the air after a fireworks show.

Scientists would never get the prospect to research just what the crew was smelling.

The moon soil and rock samples were sent to labs in sealed containers, once the pack was open on earth.smell  has gone

Somehow, as Charles Fishman, author of 1 Giant Leap, says, “The smell of the moon remained on the moon.”

MOON SMELL

2. JFK was more focused on beating the Soviets than in space.

In public, President John F. Kennedy had boldly pledged that the us would “set sail on this new sea because there’s new knowledge to be gained, and new rights to be won, and that they must be won and used for the progress of all people.”

But secret tapes of Kennedy’s discussions would later reveal that privately, JFK was less curious about space exploration than in one-upping the Soviets.

In a 1962 meeting with advisors and NASA administrators, JFK confessed, “I’m not that curious about space.” But he was curious about winning the conflict. Just months after JFK’s inauguration, the Soviet Union had sent the primary man into space. Kennedy asked his vice-chairman, Lyndon B. Johnson, how the U.S. could score a win against the Soviets.

One of the simplest ways to point out U.S. dominance, Johnson reported back, was by sending a manned mission to the moon. Johnson, in fact, had long been an area advocate, saying in 1958, “Control of space is control of the planet .”

3. The Soviets covered up their efforts to urge to the moon first.

It seems that the us wasn’t alone in eagerness to demonstrate its dominance by landing humans on the moon. The Soviet Union was also gunning to accomplish the feat. But once U.S. astronauts got there first, the Soviets tried to stay their efforts on the down-low.

4. Astronauts trained for microgravity by walking “sideways.”

How does one prepare to send someone to an area nobody has ever gone before? For NASA within the 1960s, the solution was to make simulations that mimicked aspects of what astronauts could expect to encounter.

Armstrong and Aldrin rehearsed collecting samples on fake, indoor moonscapes. Armstrong practiced beginning and landing within the Lunar Landing Training Vehicle in Houston. And, to simulate walking within the moon’s lower-gravity atmosphere, astronauts were suspended sideways by straps then walked along a tilted wall.

NASA and therefore the U.S. Geological Survey even blasted out craters at Cinder Lake, Arizona to make a landscape that matched a part of the moon’s surface—because, after all, practice makes perfect

5. Civil Rights activists got a front-row seat to the Apollo 11 launch.

Not everyone was gung-ho about the U.S. effort to land people on the moon. a couple of days before the scheduled launch of Apollo 11, a gaggle of activists, led by civil rights leader Ralph Abernathy, arrived outside the gates of the Kennedy Space Center. They brought with them two mules and a wooden wagon for instance the contrast between the gleaming white Saturn V rocket and families who couldn’t afford food or an honest place to measure.

Amid the heady build-up to the launch, the NASA administrator, Paine, came bent ask the protestors, face-to-face. After Paine and Abernathy talked for a short time under lightly falling rain, Paine said he hoped Abernathy would “hitch his wagons to our rocket, using the program as a spur to the state to tackle problems boldly in other areas, and using NASA’s space successes as a yardstick by which progress in other areas should be measured.”

Paine then arranged to possess members of the group to attend the subsequent day’s launch from a VIP viewing area. Abernathy prayed for the security of the astronauts and said he was as proud as anyone at the accomplishment.

6. Buzz Aldrin took communion on the moon.

When Apollo 11‘s Eagle lunar excursion module landed on the moon on July 20, 1969, astronauts Armstrong and Buzz Aldrin had to attend before venturing outside. Their mission ordered them to require an interruption before the large event.

So Aldrin used a number of the time doing something unexpected, something no man had ever attempted before. Alone and overwhelmed by anticipation, he took part within the first Christian sacrament ever performed on the moon—a rite of Christian communion.

7. Scientists have scared about space germs infecting Earth.

Armstrong, Aldrin, and Collin risk their lives for the advancement of humanity

They had the dubious pleasure of being quarantined for planetary protection.

Since humans had never been to the moon before,

NASA scientists couldn’t make certain that some deadly space-borne plague hadn’t hitched a ride on the astronauts.

The trio was transferred to a mobile quarantine facility on July 24,

when the re-enter to down to pacific

They were transported to NASA Lunar Receiving Laboratory at Johnson Space Center

To access a bigger quarantine facility until their release on August 10, 1969.

8. Nixon was anxious the mission could fail.

While Kennedy had rallied the state to land a person on the moon,

he was assassinated before he could see the Apollo mission achieve his vision.

That nerve-racking honor fell to President Nixon, who had been elected in 1968.

His staff had prepared a press release to be read within the event

the worst happened and arranged a priest to commit their souls to the deep, very similar to a burial stumped.

He didn’t. the lads who had traveled quite 200,000 miles to the moon

then stepped foot on an alien world had survived.

therefore the us would continue to finish six crewed missions

that landed a complete of 12 astronauts on the moon from 1969 to 1972.

ALSO CHECK-https://forgottentheory.com/another-way-of-cooling-in-refrigeration-system-magneto-caloric-effect/

ANTI SOLAR PANEL

ANTI SOLAR PANEL

 

why we need anti solar panel?

  • One of the problems with solar panels is that they don’t generate electricity at night
  • so we have to store the electricity they generate during the day to power things during the evening.
  • But what if we could develop solar panels that did generate electricity at night?
  • It is possible by anti solar panel.

what is anti solar panel?

anti solar panel

  • Anti solar panel is a panel that works in dark.
  •  To create a solar panel that generates electricity at night
  • Then you just have to create the exact opposite of solar panels work during the day.
  • It can be refer as“anti-solar panel.

How does it works?

  • There are different sorts of solar panels.
  • The one most typically used may be a type that generates electricity from the sun through a physical process called the photo-voltaic (PV) effect  i.e ,when light exposure on certain materials generates an electrical current.

PV CELLS

  • Another type is to generates electricity from heat through thermal processes.
  •  The sun is hotter and Earth is cooler, and therefore the difference in temperature are often converted into usable energy.
  • That second quite solar battery is that the one that inspired a team of researchers at Stanford University in Palo Alto , California to develop a replacement system which can harness energy darkly .
  •  An inverse version of the solar battery also supports the concept of using heat to urge energy
  • While the solar battery uses the heat difference between the sun and Earth with the planet being the cooler side .

i.e,  system makes use of the heat difference between the coolness of the night atmosphere.

electricity generate at night

  •  thus the planet with the world being the hotter side.
  • The amount of power coming in, from the Sun . Approximately equal amount of power going out from the planet as thermal radiation,
  • so on stay the planet at a roughly constant temperature.
  • the number of power available for harvesting is extremely large.
  •  this device has the potential to bridge the gap left by solar energy , collecting energy from the night sky.

THERMOELECTRIC GENERATOR

  • The thermoelectric generatorbased device harnesses the variance in temperature between Earth and space.
  • By using a passive cooling mechanism mentioned as radiative sky cooling to require care of the cold side of a thermoelectric generator several degrees below ambient.”
  •  the encircling air heats the great and comfy side of the thermoelectric generator, with the subsequent temperature difference converted into usable electricity.
  • We highlight pathways to improving performance from a demonstrated 25 mW/m2 to 0.5 W/m2.
  • Finally, we demonstrate that even with the low-cost implementation demonstration here, enough power is produced to light a LED: generating light from darkness.

Conclusion

  • if we can devise a system that can generate clean energy 24 hours a day, we could possibly produce more energy than we need and store it for various purposes, such as an emergency.
  • It’s better to have too much energy than to come up short
  • The researchers have only tested their system with a very small prototype.
  • The device was a 20-centimeter (8-inch) aluminum disk painted black and attached to commercial thermoelectricity generators.
  • It successfully created enough energy to power one small LED lightbulb–a small success with immeasurably massive potential.
  • It’s even possible that the device could act in reverse during the daytime, absorbing sunlight and producing electricity from a heat travelling from the sun to the disk and into the surface environment.

    This generator could produce power at nighttime or low-resource areas that lack electricity within the dark when solar panels don’t work.

  • For now, this device doesn’t compared to the energy harvesting abilities of a solar battery.
  • But the technology remains only within the research and development stage.
  • The researchers have already planned to improve .
  • By enhancing the insulation around the top plate that might  raise the energy of device to produce 0.5 watts per square meter or more.

 

ALSO CHECK: WIND TURBINE